Screwed Gamers Homepage

Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
An Introduction to Textile Processing Auxiliaries
#1
Although auxiliaries have been a key component of immersion dyeing processes for many years the precise mode of action of many auxiliaries has not been fully resolved. This part of the paper discusses the various types of auxiliary available and the nature of the assistance they provide in immersion dyeing processes, together with both environmental and financial aspects associated with their use, as well as a discussion of the relationship between liquor ratio and the use of auxiliaries in immersion dyeing.

The purpose of functional additives is to facilitate a textile process and/or increase its efficiency. They serve as sizing materials, lubricants, wetting agents, emulsifiers, agents accelerating or decelerating the dyeing rate, thickeners, binders, etc. often with considerable overlap in the functions and abilities of a specific chemical. Compounds used encompass many different chemical classes, some of which are affected by enzymes and thus can be regarded as substrates, and some of which remain unaffected. Owing to environment and economical concerns, pre-treatment auxiliaries are used as sparingly as possible.

Once the respective process is terminated they are to be removed completely from the treated material; however, traces could still be present and interfere negatively with subsequent processing steps.

Sizing compounds and lubricants are applied to yarns before fabric formation to protect the integrity of the yarns. While increasingly faster weaving processes demand more enduring sizes, acrylic-based compounds, natural sizes that can be decomposed are still on the market.

Such compounds comprise starch and starch derivatives, as well as soluble. Cellulose derivatives, with waxes often admixed.Desizing with amylases is one of the oldest enzymatic processes used in the textile industry. A comprehensive description of the process can be found in Uhlig (1998).

Starch has also been very useful as a thickener in printing pastes and as a component of adhesives. In printing processes, starches are applied to guarantee a defined design and to avoid spreading of the printing paste. In the paper industry, starches increase sheet strength and, as coatings, improve the writing and printing properties of high quality paper.

Dyeing and printing auxiliaries may be defined as substances that, when applied to a substrate provide color by a process that alters, at least temporarily, any crystal structure of the colored substances. Such substances with considerable coloring capacity are widely employed in the textile, pharmaceutical, food, cosmetics, plastics, photographic and paper industries. The dyes can adhere to compatible surfaces by solution, by forming covalent bond or complexes with salts or metals, by physical adsorption or by mechanical retention. Dyes are classified according to their application and chemical structure, and are composed of a group of atoms known as chromophores, responsible for the dye color. These chromophore-containing centers are based on diverse functional groups, such as azo, anthraquinone, methine, nitro, arilmethane, carbonyl and others. In addition, electrons withdrawing or donating substituents so as to generate or intensify the color of the chromophores are denominated as auxochromes. The most common auxochromes are amine, carboxyl, sulfonate and hydroxyl.

It is estimated that over 10,000 different dyes and pigments are used industrially and over 7 x 105 tons of synthetic dyes are annually produced worldwide. Textile materials can be dyed using batch, continuous or semi-continuous processes. The kind of process used depends on many characteristics including type of material as such fiber, yarn, fabric, fabric construction and garment, as also the generic type of fiber, size of dye lots and quality requirements in the dyed fabric. Among these processes, the batch process is the most common method used to dye textile materials.

In the textile industry, up to 200,000 tons of these dyes are lost to effluents every year during the dyeing and finishing operations, due to the inefficiency of the dyeing process. Unfortunately, most of these dyes escape conventional wastewater treatment processes and persist in the environment as a result of their high stability to light, temperature, water, detergents, chemicals, soap and other parameters such as bleach and perspiration. In addition, anti-microbial agents resistant to biological degradation are frequently used in the manufacture of textiles, particularly for natural fibers such as cotton. The synthetic origin and complex aromatic structure of these agents make them more recalcitrant to biodegradation. However, environmental legislation obliges industries to eliminate color from their dye-containing effluents, before disposal into water bodies.

The textile industry consumes a substantial amount of water in its manufacturing processes used mainly in the dyeing and finishing operations of the plants. The wastewater from textile plants is classified as the most polluting of all the industrial sectors, considering the volume generated as well as the effluent composition. In addition, the increased demand for textile products and the proportional increase in their production, and the use of synthetic dyes have together contributed to dye wastewater becoming one of the substantial sources of severe pollution problems in current times.

Textile wastewaters are characterized by extreme fluctuations in many parameters such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), pH, color and salinity. The composition of the wastewater will depend on the different organic-based compounds, chemicals and dyes used in the dry and wet-processing steps. Recalcitrant organic, colored, toxicant, surfactant and chlorinated compounds and salts are the main pollutants in textile effluents.

In addition, the effects caused by other pollutants in textile wastewater, and the presence of very small amounts of dyes (<1 mg/L for some dyes) in the water, which are nevertheless highly visible, seriously affects the aesthetic quality and transparency of water bodies such as lakes, rivers and others, leading to damage to the aquatic environment.

During the dyeing process it has been estimated that the losses of colorants to the environment can reach 10–50%. It is noteworthy that some dyes are highly toxic and mutagenic, and also decrease light penetration and photosynthetic activity, causing oxygen deficiency and limiting downstream beneficial uses such as recreation, drinking water and irrigation.

With respect to the number and production volumes, azo dyes are the largest group of colorants, constituting 60-70% of all organic dyes produced in the world. The success of azo dyes is due to the their ease and cost effectiveness for synthesis as compared to natural dyes, and also their great structural diversity, high molar extinction coefficient, and medium-to-high fastness properties in relation to light as well as to wetness. They have a wide range of applications in the textile, pharmaceutical and cosmetic industries, and are also used in food, paper, leather and paints. However, some azo dyes can show toxic effects, especially carcinogenic and mutagenic events.
Reply


Messages In This Thread
An Introduction to Textile Processing Auxiliaries - by ttois155ssa - 09-08-2021, 01:44 AM

Forum Jump:


Users browsing this thread: 2 Guest(s)